Exceptional service in the national interest

Kokkos – Performance Portability Today

Christian Trott, Carter Edwards, Nathan Ellingwood, Si Hammond

crtrott@sandia.gov

Center for Computing Research Sandia National Laboratories, NM

Kokkos: Performance, Portability and Productivity

https://github.com/kokkos

Performance Portability through Abstraction

Separating of Concerns for Future Systems...

- Access Behavior: Atomic
- Enables special load paths: i.e. texture
- Dynamic / Static Scheduling
- Support non-persistent scratch-pads

Going Production

- Robust Compilation and Environment Testing
 - Nightly test of 12 Compilers (GCC, Intel, Clang, NVCC)
 - >100 total configurations
 - Warnings as errors with "-pedantic -Wall -Wshadow"
- Documentation and User Training
 - Programming Guide
 - Extensive Tutorials: https://github.com/kokkos/kokkos-tutorials
 - > 300 Slides, dozens of hands-on examples with solutions
 - Under discussion: cloud based self-learning labs (used at GTC 2016)
- Profiling and Debugging Tools Integration
 - Talk by Simon Hammond (SNL) later this week
- Production and Next Generation Applications
 - ATDM targeting KNL and GPUs from beginning (talk by Stan Moore)
 - Sierra Mechanics focusing on thread safety/scalability until late 2017

Managing Memory Hierarchies

- Memory Hierarchies At Low-Level are both Physical and Logical
 - Example current x86 + NVIDIA GPU with allocations in
 - UVM Space: let the CUDA runtime handle data transfer
 - CUDA Space: I know what I am doing, leave the runtime out of the way
 - HostPinned Space: I want to use asynchronous mem-copy with DMA engine
- Kokkos gives tools to do Low-Level management
- Applications write/use customizations for higher level management
 - Example LAMMPS:
 - Physics modules provide bit-masks for read/write access of fields
 - Memory management in LAMMPS uses Kokkos API to get data where it needs to be, including asynchronous copies
- Open: can we come up with generic High-Level Interfaces
 - Are use cases similar enough?
 - Multi-Lab CoE Talk by Ian Karlin (LLNL)

LAMMPS – Heterogeneous Execution

Reverse Offload

- LAMMPS/example/accelerate/ in.phosphate
- Goal overlap Pair and Kspace
 - Requires Asynchronous Deep Copy
- When Overlapping:
 - Comm contains pair time since it fences to wait for pair force
 - 96% of Kspace time reduction

Managing Access Patterns

- Change Data Access Pattern
 - Single typedef per code
- Adapt to Architectures
- Custom Layouts Easy
- Example SIMD friendly storage
 - Support explicit vector types for some kernels
 - View<float*[3],LayoutRight>
 - View<float*[3], LayoutSIMDRight> x x y y z z x x y y z z
 View<float2*[3], LayoutRight> xx yy zz xx yy zz
- Before: a[i%V + j*V + (i/V)*V*3] Now: a(i,j)

V Z

Example Atomic Support

- Avoiding write conflicts comes with cost
 - Coloring: code complexity (for unstructured), potentially much more memory traffic (only parts of each cache line are used per color), loss of concurrency
 - Data Replication: memory footprint / traffic, additional reduction, less cache efficient
 - Atomics: serialization, loss of vectorization, potentially loss of L1 caching
 - Compute Replication: more flops / iops, more memory traffic
- Kokkos is used with all methods
- For unstructured problems atomics are often preferred over other approaches
 - View<double**, MemoryTraits<Atomic> > a_atomic = a;

Atomic Rate for(i=0,N) atomic_add(a[i%M], one)

Under development: KokkosKernels

- Provide BLAS (1,2,3); Sparse; Graph and Tensor Kernels
- No required dependencies other than Kokkos
- Local kernels (no MPI)
- Hooks in TPLs such as MKL or cuBLAS/cuSparse where applicable
- Provide kernels for all levels of hierarchical parallelism:
 - Global Kernels: use all execution resources available
 - Team Level Kernels: use a subset of threads for execution
 - Thread Level Kernels: utilize vectorization inside the kernel
 - Serial Kernels: provide elemental functions (OpenMP declare SIMD)
- Work started based on customer priorities; expect multi-year effort for broad coverage
- People: Many developers from Trilinos contribute
 - Consolidate node level reusable kernels previously distributed over multiple packages

SPMV Benchmark: MKL vs Kokkos

1S HSW 24 Threads, Matrices sorted by size, Matrices obtained from UF

On GPUs: CuSparse vs Kokkos: All: 1.07 Without Small: 0.84

The Common Problems We Face

- Interference with Compiler Optimizations
 - Deducing Independence of Views: restrict for pointer as class members?
 - Hoisting loads from inner loops, with that being parallel_for
 - Loosing "const" when creating lambdas with capture by reference
 - Generally loosing surrounding information when using Lambdas
- Deficiencies in C++ Language for threading models
 - *this capture for Lambdas in member functions
 - Part of C++17
 - Enables asynchronous dispatch
 - Added to Clang 3.9
 - Error handling in threaded environments
 - OpenMP 4 handling of classes
 - What to do with STL objects

The Way Forward

- Stabilize Kokkos Capabilities
 - Support tasking on all platforms
 - Make sure compilers optimize through layers
 - Harden KNL support for High Bandwidth Memory
- Broaden Implementation Coverage for Kokkos Kernels
- Support Production Teams in Adoption
- Develop even more Documentation
- Extend profiling tools to help with transition

www.github.com/kokkos/kokkos-tutorials www.github.com/kokkos/kokkos-tutorials www.github.com/kokkos/kokkos-tools www.github.com/trilinos/Trilinos Kokkos Core Repository Kokkos Tutorial Material Kokkos Profiling Tools Trilinos Repository

Exceptional service in the national interest

http://www.github.com/kokkos

NALU Assembly

Uses atomic operations to fill into matrix

SPMV Benchmark: CuSparse vs Kokkos

K40c Cuda 7.5; Matrices sorted by size; Matrices from UF.

